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A B S T R A C T   

Purpose: Intensity-modulated proton therapy (IMPT) significantly reduces mean heart dose (MHD), but data on 
cardiac substructure dose and toxicity compared to intensity-modulated radiation therapy (IMRT) are limited. 
This study evaluated dose reduction in cardiac substructures between IMPT and IMRT and assessed cardiac 
toxicity risks using 2 normal tissue complication probability models. 
Materials and methods: A retrospective analysis was conducted on 30 breast cancer patients from a randomized 
trial with the highest MHD receiving IMRT. IMPT plans were created for a prescribed dose of 4005 cGy(RBE) in 
15 fractions. Normal tissue complication probability models were used to compare individual acute coronary 
events (ACEs) risk between IMPT and IMRT. 
Results: Intensity-modulated proton therapy reduced cardiac substructure doses by 63.34% to 100%, with 
greater absolute reductions in left-sided and relative reductions in right-sided patients. For left-sided internal 
mammary node irradiation (IMNI), IMPT achieved an 82.25% reduction for left anterior descending coronary 
artery (P = .009), 79.45% for RV (P  <  .001), and over 90% for other substructures. Right-sided patients had 
near-zero mean doses in most substructures. The Darby model indicates IMPT reduces individual ACE risk by 
1.58% to 5.16% for left-sided IMNI (P = .001) and 0.59% to 1.05% for right-sided IMNI (P = .063). The 
Bogaard model shows a 0.19% to 2.75% reduction in individual 9-year ACE risk-based MHD for left-sided IMNI 
(P = .0015). Risk reduction variations are influenced by dose reduction and other risk factors. 
Conclusion: Intensity-modulated proton therapy provides excellent cardiac protection, particularly for left-sided 
IMNI and high-risk patients.   

Introduction 

Breast cancer is one of the most prevalent malignancies affecting 
women globally, with radiation therapy (RT) playing a crucial therapeutic 
role.1-4 While RT effectively reduces local recurrence and improves sur
vival in breast cancer, it also raises concerns about cardiac toxicity, which 
could compromise the survival benefits.2,5-7 There is no established safe 
threshold for cardiac radiation exposure, although minimizing cardiac 
doses has been continuously recommended.8-11 Novel RT techniques for 

breast cancer have prioritized minimizing cardiac exposure, such as heart- 
sparing techniques, deep inspiration breath-hold, and image-guided ra
diation therapy.6,12 Particle therapy, in particular proton therapy, with its 
unique physical aspects, offers superior cardiac dose reduction than 
photon therapy.13-19 Other particles, such as carbon ions, have shown their 
perspective not only in reducing cardiac dose reduction but also in im
proving therapeutic outcomes.14-17 

Despite the dosimetric advantages of proton therapy in sparing the 
heart, its correlation to cardiac event reduction remains to be defined in 
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breast cancer.18-21 There are ongoing Phase III trials, such as RADCOMP 
and DBCG Proton, assessing the efficacy of cardiac protection with 
proton therapy in patients with a high risk of cardiac toxicity.22,23 Using 
the Normal Tissue Complication Probability (NTCP) model developed 
by Darby et al,8 the national proton therapy working group for breast 
cancer in the Netherlands established a threshold value of a 2% abso
lute reduction in the risk of acute coronary events (ACEs) as a criterion 
for proton therapy recommendation, which also becomes a basis for its 
reimbursement since January 2019.24 These studies primarily estimate 
the clinical benefits of proton therapy based on the reduction in dose to 
the whole heart. Modern RT techniques, like intensity-modulated ra
diation therapy (IMRT), show considerable variability in dose dis
tribution across cardiac substructures.25-29 Our previous study demon
strated that the left anterior descending coronary artery (LAD), left 
ventricle (LV), and right ventricle (RV) receive the highest doses for 
left-sided patients and right atrium (RA), right coronary artery (RCA), 
and RV were most irradiated for right-sided patients.29 The difference 
in radiosensitivity and corresponding clinical manifestation of cardiac 
substructures adds complexity to assessing radiation-induced cardiac 
toxicity beyond LV dysfunctions and coronary artery disease.25,26,30-33 

With the background that intensity-modulated proton therapy 
(IMPT) has significantly reduced whole heart dose in breast cancer 
patients compared to any of the photon RT techniques, the current 
study aims first to provide a panorama view of differences in cardiac 
substructure doses between IMPT and IMRT in patients with different 
tumor laterality and target volume, second, to compare the possible 
associated risks of cardiac toxicity based on 2 NTCP models. 

Materials and methods 

Study population 

A total of 199 patients enrolled in a randomized trial29 that eval
uated early cardiac toxicity in breast cancer patients receiving post
operative IMRT under free breathing were retrospectively reviewed. 
This trial allowed hypofractionated and conventional regimens. Pa
tients were classified into 6 groups based on the tumor laterality and 
target volume: left-sided whole breast irradiation (WBI), left-sided re
gional nodal irradiation (RNI) without internal mammary node irra
diation (IMNI), left-sided RNI with IMNI, right-sided WBI, right-sided 
RNI without IMNI, and right-sided RNI with IMNI. Patients receiving 
RNI also underwent WBI or chest wall irradiation. For this study, we 
renormalized the treated IMRT plans to 4005 cGy in 15 fractions, and 
the boost plans for the tumor bed were excluded. The heart was con
toured according to the atlas published by Feng et al,34 and mean heart 
dose (MHD) was calculated. The 5 patients with the highest MHD from 
each group were selected. In total, 30 patients were enrolled in this 
analysis. This study was approved by the local ethics committees of the 
participating institutions, and informed consent was obtained from all 
patients. 

Treatment planning 

Patients were immobilized on a breastboard (Klarity) and positioned 
in a supine position with both arms abducted over the head. All CT 
scans were acquired in the helical mode under free breathing. Clinical 
target volumes (CTVs) of the whole breast and chest wall were con
toured following the Radiation Therapy Oncology Group guidelines,35 

with specific modifications to the anterior and posterior CTV borders. 
These modifications limited the extension to 3 to 5 mm subcutaneously 
and excluded the ribs and intercostal muscles. The regional lymph 
nodes were delineated as in our previous report.36 

For the IMRT planning, the planning target volume was created by 
expanding the CTV by an isotropic margin of 5 mm. Treatment plans 
were designed using a fixed-jaw IMRT technique37 in the Eclipse 
treatment planning system (Version 13.6 and 15.6, Varian Medical 

Systems, Palo Alto, CA). A 3 mm bolus was introduced for chest wall 
irradiation. We used the analytical anisotropic algorithm for dose cal
culation. For the IMPT planning, plans were created using 2 to 3 beams 
with a 4.67 g/cm2 range shifter in the RayStation treatment planning 
system (Version 10B, RaySearch Laboratories AB, Stockholm, Sweden). 
A constant relative biological effectiveness (RBE) of 1.1 was adopted. 
Plans were robustly optimized to fulfill the CTV coverage, considering 
3 mm setup uncertainties in 3 dimensions and 3.5% range uncertainty. 
The Monte Carlo algorithm was used in the dose optimization and final 
dose calculation. The end-of-range LET effects were not explicitly 
modeled during IMPT optimization, and LET-based optimization was 
not utilized. The IMRT and IMPT plans were normalized to cover 95% 
of the CTV with the 4005 cGy (RBE). Planning directives are detailed in 
the Supplement materials. 

Data collection 

The delineation of cardiac substructures, including the LV, left at
rium, RA, RV, LAD, RCA, left circumflex coronary artery (LCX), and left 
main coronary artery (LM), followed the heart atlas by Feng et al.34 

Dosimetric parameters for the heart and cardiac substructures were 
collected for both IMRT and IMPT plans. Additionally, patient demo
graphics, cardiac risk factors, tumor characteristics, and treatment data 
were collected for analysis. 

Estimation of cardiac toxicity 

The risk of cardiac toxicity was assessed using the established NTCP 
models. The Darby et al8 model estimates a 7.4% relative increase of 
ACE risk per Gy of MHD. According to the national indication protocol 
for proton therapy in the Netherlands, the absolute lifetime risk of ACE 
in our cohort was calculated by applying this model to the Dutch ab
solute incidence of ACE, adjusting for gender, age, and cardiovascular 
risk factors including previous ischemic cardiovascular disease, any 
previous “circulatory disease” other than ischemic cardiovascular dis
ease, diabetes, chronic obstructive pulmonary disease, active smoker, 
body mass index ≥30 kg/m2, and chronic pain medication.24 In addi
tion, we also applied the van den Bogaard et al38 model, which calcu
lated the ACE risk within 9 years based on MHD or the volume of the LV 
receiving 5 Gy (LV_V5). This model incorporates a weighted ACE risk 
score that accounts for individual cardiovascular risk factors, including 
diabetes, hypertension, and previous ischemic cardiac events. 

Statistical analysis 

Continuous variables were summarized using means and standard 
deviations or medians and ranges. Categorical variables were described 
with frequencies and percentages. To compare dosimetric parameters and 
the ACE risk between IMPT and IMRT plans, paired t-tests or Wilcoxon 
signed-rank tests were used. Spearman’s correlation coefficients were 
calculated to analyze the inter-parameter relationships of percentage re
ductions in dosimetric values of the whole heart and cardiac substructures 
when comparing IMPT plans to IMRT plans. These correlations were vi
sualized with a heatmap to highlight significant associations and patterns. 
Statistical significance was defined as 2-sided P  <  .05. Analyses were 
conducted using SPSS version 25.0 (IBM Corporation, USA), R version 
4.3.2 (R Foundation for Statistical Computing, Vienna, Austria), and 
GraphPad Prism 6 (GraphPad Software, La Jolla, CA). 

Results 

Patient characteristic 

Demographics, tumor, and treatment information are detailed in  
Table 1. In the 30 patients, the median age is 54 years, ranging from 33 
to 79. Most patients (80%) had no cardiovascular risk factors. 
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Hypertension was observed in 16.7% of the cohort, and diabetes and other 
circulatory diseases were present in 3.3% each. No patients had ischemic 
heart disease or chronic obstructive pulmonary disease. Only 1 patient 
(3.3%) had a body mass index ≥30 kg/m². Chemotherapy was given to 
73.4% of patients, featuring regimens with anthracyclines, taxanes, or a 
combination thereof. All HER2-positive patients received targeted therapy, 
and all HR-positive patients received endocrine therapy. 

Reduction in dose to the whole heart with intensity-modulated proton 
therapy compared to intensity-modulated radiation therapy 

IMPT significantly reduces radiation exposure to the whole heart 
compared to IMRT (Table 2). For left-sided WBI, MHD was lowered 
from 434.83  ±  38.07 cGy with IMRT to 31.09  ±  8.57 cGy(RBE) with 
IMPT, a magnitude of 92.83% (P  <  .001). In left-sided RNI without 
IMNI, MHD was 424.28  ±  60.05 cGy with IMRT and 66.31  ±  25.88 
cGy(RBE) with IMPT, an 84.71% decrease (P  <  .001). With IMNI, 
IMPT reduces MHD from 563.31  ±  65.28 cGy with IMRT to 
76.97  ±  10.62 cGy(RBE), an 86.74% reduction (P = .007). Across 
dose-volume parameters (maximum dose, V2, V5, V10, V15, V25, V30), 
IMPT consistently reduces cardiac exposure (all P  <  .05). For right- 
sided patients, IMPT also effectively decreases radiation exposure to the 
whole heart, with V2, V5, V10, V15, V25, and V30 close to 0. 

Reduction in dose to cardiac substructures with intensity-modulated proton 
therapy compared to intensity-modulated radiation therapy 

The irradiation fields and isodose distribution diagrams of IMRT and 
IMPT are shown in Figure 1A. IMPT significantly reduces mean doses to 
all cardiac substructures compared to IMRT (Figure 1B and C, Figure 2, 
and Table S1). For left-sided WBI with IMPT, mean doses to the LA, RA, 
RCA, and LM were lowered to almost zero (all P  <  .001), and nearly 
100% reduction in LCX (P = .063). In left-sided RNI without IMNI, a 
reduction of over 90% was observed in all substructures except for LAD, 
which was a 63.34% reduction. With IMNI, IMPT achieves an 82.25% 
reduction for LAD (P = .009), 79.45% for RV (P  <  .001), and over 
90% for other substructures (Figures 1B and 2A and Table S1). For 
right-sided patients, nearly zero mean dose was found in all sub
structures, with only limited maximum dose to the RA, RV, and RCA 
found in RNI with IMNI (Figures 1C and 2B and Table S1). The re
maining dose for IMPT was concentrated to LAD, with mean doses of 
356.47  ±  144.87 cGy(RBE), 455.44  ±  307.28 cGy(RBE), and 
478.84  ±  396.77 cGy(RBE) for WBI, RNI without IMNI, and RNI with 
IMNI, respectively (Figure 3). No significant correlation between whole 
heart dose and substructures dose reduction for both left- and right- 
sided patients was found (Figure S1). 

IMPT also significantly reduces the maximum dose to cardiac sub
structures compared to IMRT (Figure S2 and Table S2). With IMPT, the 
remaining maximum doses were concentrated to the LV, RV, and LAD 
in left-sided patients, and to the RA, RV, and RCA in right-sided RNI 
with IMNI (Figure S3). No significant correlation between whole heart 
maximum dose and substructures maximum dose reduction for both 
left- and right-sided patients either (Figure S4). 

Reduction in estimated acute coronary event risk with intensity-modulated 
proton therapy compared to intensity-modulated radiation therapy 

Both the Darby model and the Bogaard model show significant 
benefits of IMPT over IMRT in reducing ACE risk, particularly for left- 
sided patients (Figure 4 and Table S3). Using the Darby model, IMPT 
reduces individual ACE risk by 1.58% to 5.16% for left-sided RNI with 
IMNI (P = .001) and 0.59% to 1.05% for right-sided RNI with IMNI 
(P = .063), based on cardiovascular risk factors. Using the Bogaard 
model, IMPT reduces ACE risk within 9 years. However, prediction 

Table 1 
Patient demographics, tumor characteristics, and treatment details.     

Parameters N %  

Age (y), median (range) 54 (33- 
79)  

No. of cardiovascular risk factors   
0 24  80.0% 
≥1 6  20.0% 

History of cardiovascular comorbidity   
Ischemic heart disease   

No 30  100.0% 
Yes 0  0.0% 

Hypertension   
No 25  83.3% 
Yes 5  16.7% 

Diabetes   
No 29  96.7% 
Yes 1  3.3% 

Other circulatory disease   
No 29  96.7% 
Yes 1  3.3% 

COPD   
No 30  100.0% 
Yes 0  0.0% 

Lifestyle risk factors   
BMI ≥30 kg/m2   

No 29  96.7% 
Yes 1  3.3% 

Current smoker   
No 30  100.0% 
Yes 0  0.0% 

T stagea   

T1 17  56.7% 
T ≥2 13  43.3% 

N stage   
N0 11  36.7% 
N1 13  43.3% 
N2 4  13.3% 
N3 2  6.7% 

HR status   
Negative 5  16.7% 
Positive 25  83.3% 

HER2 status   
Negative 23  76.7% 
Positive 7  23.3% 

Primary surgery   
Mastectomy 13  43.3% 
BCS 17  56.7% 

ALND   
No 13  43.3% 
Yes 17  56.7% 

Chemotherapy   
Neoadjuvant + Adjuvant 2  6.7% 
Adjuvant 20  66.7% 
None 8  26.7% 

Chemotherapy regimens   
Anthracyclines 2  6.7% 
Taxanes 8  26.7% 
Anthracyclines + Taxanes 20  66.7% 

HER2-targeted therapy in HER2-positive tumor  
(N = 7)   

No 0  0.0% 
Yes 7  100.0% 

Endocrine therapy in HR-positive tumor  
(N = 25)   

No 0  0.0% 
Yes 25  100.0% 

Abbreviations: COPD, chronic obstructive pulmonary disease; BMI, body mass 
index; HR status, hormone receptor status; HER2 status, human epidermal 
growth factor receptor 2 status; BCS, breast-conserving surgery; ALND, axillary 
lymph node dissection.  

a The staging adhered to the seventh edition American Joint Committee on 
Cancer (AJCC) staging system and recorded the maximal disease stage in pa
tients receiving neoadjuvant therapy.  
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using MHD or LV_V5 differs. In left-sided RNI with IMNI, IMPT reduces 
individual ACE risk, ranging from 0.51% to 0.88% based on LV_V5 
(P = .002) and ranging from 0.19% to 2.75% based on MHD 
(P = .0015). For right-sided patients, LV_V5 reaches zero, whereas 
using the MHD model, there remains a borderline significant benefit 
from IMPT in right-sided RNI with and without IMNI (P = .058 and 
.063, respectively). For example, a right-sided patient (P_21) with 
multiple cardiovascular risk factors undergoing RNI without IMN can 
achieve up to a 1.27% reduction in ACE risk with IMPT (Table S3). 

Cardiovascular risk factors significantly influence the benefits of 
IMPT in reducing ACE risk, and the degree of benefit from IMPT 

increases when more cardiovascular risk factors are found in 1 patient. 
Assuming the patient has cardiovascular risk factors or an ACE risk 
score of 4, the predicted reduction in ACE risk would significantly in
crease according to both the Darby et al8 model and the van den Bo
gaard et al38 model (Table S4). 

Discussion 

Although there is little controversy that IMPT is associated with a 
significant reduction in heart radiation exposure in patients receiving 
breast RT using state-of-the-art photon techniques, there is a lack of a 

Table 2 
Comparisons of dosimetric parameters for the whole heart between IMRT and IMPT.           

IMRT IMPT Absolute decrease Percentage decrease (%)   

Mean ± SD Mean ± SD Median Range Median Range P  

Left-sided WBI        
Heart_Dmean (cGy[RBE]) 434.83  ±  38.07 31.09  ±  8.57  409.76 354.29-459.65  92.83 90.57-95.30  < .001 
Heart_Dmax (cGy[RBE]) 4151.63  ±  138.55 2982.18  ±  456.84  1052.43 673.29-1628.02  24.89 15.61-39.02 .003 
Heart_V2 (%) 35.53  ±  4.53 3.28  ±  0.61  33.53 26.28-37.07  90.39 89.40-92.92  < .001 
Heart_V5 (%) 13.73  ±  0.98 1.84  ±  0.53  11.80 11.25-12.90  87.81 82.24-89.69  < .001 
Heart_V10 (%) 9.64  ±  0.82 0.91  ±  0.40  8.60 7.62-10.22  91.01 85.49-94.76  < .001 
Heart_V15 (%) 8.10  ±  1.22 0.44  ±  0.28  7.49 6.18-9.54  94.20 89.52-97.84  < .001 
Heart_V25 (%) 6.08  ±  1.59 0.05  ±  0.10  5.77 3.83-7.97  99.77 96.17-99.99 .001 
Heart_V30 (%) 5.23  ±  1.67 0.01  ±  0.03  4.89 2.84-7.09  100.00 98.57-100.00 .002 

Left-sided RNI without IMNI        
Heart_Dmean (cGy[RBE]) 424.28  ±  60.05 66.31  ±  25.88  352.26 325.80-407.50  84.71 80.82-91.42  < .001 
Heart_Dmax (cGy[RBE]) 4313.74  ±  169.42 3450.77  ±  469.99  654.58 410.40-1763.24  15.96 9.83-39.58 .027 
Heart_V2 (%) 33.47  ±  14.88 5.28  ±  1.71  22.18 16.67-46.64  83.89 79.48-87.19 .009 
Heart_V5 (%) 14.83  ±  3.56 3.39  ±  1.38  11.59 7.95-15.50  79.45 70.48-83.84 .001 
Heart_V10 (%) 10.79  ±  2.42 2.09  ±  0.99  8.88 6.69-11.95  85.20 69.37-90.44 .001 
Heart_V15 (%) 8.31  ±  1.48 1.38  ±  0.72  6.59 5.51-8.67  80.60 74.30-95.52  < .001 
Heart_V25 (%) 5.47  ±  1.15 0.50  ±  0.32  5.59 3.61-6.08  87.48 85.18-99.84 .001 
Heart_V30 (%) 3.82  ±  1.48 0.20  ±  0.16  3.16 1.75-5.27  92.49 91.90-100.00 .005 

Left-sided RNI with IMNI        
Heart_Dmean (cGy[RBE]) 563.31  ±  65.28 76.97  ±  10.62  458.69 442.41-600.57  86.74 82.86-89.03 .007 
Heart_Dmax (cGy[RBE]) 4393.07  ±  210.52 3474.29  ±  300.47  1061.62 236.43-1335.83  24.85 5.70-28.42 .008 
Heart_V2 (%) 44.09  ±  13.26 8.39  ±  0.79  35.85 20.58-55.50  82.98 68.93-86.25 .004 
Heart_V5 (%) 23.08  ±  6.36 4.79  ±  0.81  17.32 12.17-25.58  78.33 71.47-85.64 .002 
Heart_V10 (%) 13.41  ±  2.05 2.20  ±  1.07  9.99 8.45-14.82  86.42 69.39-92.30 .001 
Heart_V15 (%) 11.22  ±  2.60 0.91  ±  0.71  9.79 6.28-13.65  94.80 78.18-98.24 .002 
Heart_V25 (%) 8.79  ±  2.88 0.10  ±  0.09  8.40 4.63-11.61  99.42 96.76-99.87 .003 
Heart_V30 (%) 6.86  ±  2.62 0.02  ±  0.03  7.45 3.33-9.34  99.86 98.43-99.96 .004 

Right-sided WBI        
Heart_Dmean (cGy[RBE]) 81.95  ±  29.62 2.01  ±  1.88  89.78 25.07-101.49  97.91 83.07-99.87 .063 
Heart_Dmax (cGy[RBE]) 917.85  ±  550.92 284.52  ±  163.29  490.71 −74.90 to 1547.97  67.29 −20.50 to 94.98 .087 
Heart_V2 (%) 5.52  ±  3.49 0.03  ±  0.04  5.54 0.42-10.16  99.90 79.96-100.00 .025 
Heart_V5 (%) 0.25  ±  0.35 0.00  ±  0.00  0.03 0.00-0.76  100.00 100.00-100.00 .177 
Heart_V10 (%) 0.03  ±  0.06 0.00  ±  0.00  0.00 0.00-0.15  100.00 100.00-100.00 .371 
Heart_V15 (%) 0.00  ±  0.01 0.00  ±  0.00  0.00 0.00-0.01  100.00 100.00-100.00 1.000 
Heart_V25 (%) 0.00  ±  0.00 0.00  ±  0.00  0.00 0.00-0.00  100.00 100.00-100.00 / 
Heart_V30 (%) 0.00  ±  0.00 0.00  ±  0.00  0.00 0.00-0.00  100.00 100.00-100.00 / 

Right-sided RNI without IMNI        
Heart_Dmean (cGy[RBE]) 173.14  ±  32.83 3.47  ±  2.08  175.08 119.49-203.38  98.21 96.71-99.12  < .001 
Heart_Dmax (cGy[RBE]) 1716.22  ±  1197.37 614.59  ±  478.36  895.32 358.50-2463.52  66.72 32.31-84.36 .038 
Heart_V2 (%) 24.47  ±  4.20 0.14  ±  0.25  24.54 18.03-27.99  99.76 97.98-100.00  < .001 
Heart_V5 (%) 6.33  ±  3.90 0.03  ±  0.06  6.17 1.16-10.59  100.00 97.87-100.00 .023 
Heart_V10 (%) 0.60  ±  0.97 0.00  ±  0.00  0.22 0.00-2.30  100.00 99.65-100.00 .063 
Heart_V15 (%) 0.30  ±  0.67 0.00  ±  0.00  0.00 0.00-1.49  100.00 100.00-100.00 1.000 
Heart_V25 (%) 0.12  ±  0.26 0.00  ±  0.00  0.00 0.00-0.59  100.00 100.00-100.00 1.000 
Heart_V30 (%) 0.05  ±  0.12 0.00  ±  0.00  0.00 0.00-0.27  100.00 100.00-100.00 1.000 

Right-sided RNI with IMNI        
Heart_Dmean (cGy[RBE]) 224.64  ±  10.03 22.12  ±  5.36  205.69 191.65-212.09  90.72 86.42-92.37  < .001 
Heart_Dmax (cGy[RBE]) 3187.72  ±  468.93 1548.74  ±  522.63  1613.31 745.65-2714.79  45.61 30.29-74.54 .011 
Heart_V2 (%) 35.64  ±  5.49 2.85  ±  0.76  35.07 25.24-39.46  92.23 88.17-94.62  < .001 
Heart_V5 (%) 8.10  ±  3.50 0.81  ±  0.71  6.49 2.93-12.33  92.28 60.07-97.88 .014 
Heart_V10 (%) 1.28  ±  0.67 0.24  ±  0.41  1.30 −0.06 to 2.14  95.80 −6.59 to 100.00 .060 
Heart_V15 (%) 0.37  ±  0.22 0.07  ±  0.16  0.33 0.02-0.66  96.67 5.95-100.00 .069 
Heart_V25 (%) 0.06  ±  0.07 0.00  ±  0.00  0.04 0.00-0.18  100.00 100.00-100.00 .136 
Heart_V30 (%) 0.01  ±  0.02 0.00  ±  0.00  0.00 0.00-0.05  100.00 100.00-100.00 .100 

Abbreviations: IMPT, intensity-modulated proton therapy; IMRT, intensity-modulated radiation therapy; SD, standard deviation; WBI, whole breast irradiation; RNI, 
regional nodal irradiation; IMNI, internal mammary nodes irradiation; Dmean, mean dose; Dmax, maximum dose. 
P value is from the paired sample tests of dosimetric parameters between the IMPT and IMRT.  
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panorama view to compare cardiac substructures dose with IMPT and 
IMRT. To our knowledge, this study is the first to carry on for that 
particular purpose. In selected patients with high MHD using IMRT, 
IMPT significantly reduces doses to all cardiac substructures, with 
variations depending on tumor laterality and target volume. Left-sided 
patients benefit from a higher absolute dose reduction, while right- 
sided patients show a greater relative reduction. IMPT reduces dose 
more significantly in substructures distal to the target volume. 
Therefore, for left-sided patients, the remaining doses are concentrated 
in the LAD LV and RV, especially in RNI with IMN. Right-sided patients 
had only minimal residual dose to the RA, RV, and RCA. NTCP models 
indicate the significant benefits of IMPT over IMRT in reducing ACE 
risk, particularly for left-sided patients and those with cardiovascular 
risk factors. 

In our selected patient cohort, MHD was 563.31  ±  65.28 and 
424.28  ±  60.05 cGy in left-sided patients with and without IMNI using 

IMRT, respectively. With IMPT, the corresponding MHDs were 
76.97  ±  10.62 and 66.31  ±  25.88 cGy(RBE), respectively, which is 
consistent with previous research.25,39-43 For example, Oonsiri et al39 

reported similar MHD with and without IMNI when using IMPT 
(110 cGy[RBE] and 120 cGy[RBE], respectively). Given the growing 
evidence of survival and recurrence control benefits of including IMNI 
in RNI,2,3,44,45 our results suggest that IMPT could be a therapeutic 
strategy worth recommending when IMNI is indicated. 

Our study identified significant dose reductions to all cardiac sub
structures with IMPT compared to IMRT. Mast et al42 found that IMPT 
significantly reduced the mean dose, V5, and V20 of the LAD compared 
to tangential IMRT with deep inspiration breath-hold in 20 left-sided 
WBI patients. Additionally, in 14 left-sided patients undergoing IMNI, 
IMPT significantly reduced doses to the LV, RV, and LAD compared to 
volumetric modulated arc therapy (VMAT).46 However, the magnitude 
of dose reduction across different cardiac substructures differs, as 

Figure 1. The irradiation field diagrams of IMPT and IMRT (A) and illustration of cardiac substructures delineation, mean dose, and isodose line distribution for 
IMPT and IMRT in left-sided (B) and right-sided (C) patients. Note: The mean dose to cardiac substructures is measured in cGy(RBE). The left main coronary artery is 
not present in the displayed CT slice and is indicated as a positional reference. Abbreviations: IMNI, internal mammary node irradiation; IMPT, intensity-modulated 
proton therapy; IMRT, intensity-modulated radiation therapy; RNI, regional nodal irradiation; and WBI, whole breast irradiation. 

Figure 2. Percentage reduction in mean dose to cardiac substructures with IMPT compared to IMRT in left-sided (A) and right-sided (B) 
patients. Abbreviations: IMNI, internal mammary node irradiation; LA, left atrium; LAD, left anterior descending coronary artery; LCX, left circumflex coronary 
artery; LM, left main coronary artery; LV, left ventricle; RA, right atrium; RCA, right coronary artery; RNI, regional nodal irradiation; RV, right 
ventricle; and WBI, whole breast irradiation. 
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revealed by our study. The benefits of IMPT are primarily influenced by 
tumor laterality and target volume. Dose reduction was most pro
nounced in substructures distal to the target volume, which is also 
usually at the distal part of the proton beam range, RA, RV, RCA, LM, 
LCX, and left atrium in left-sided RNI, particularly in those involving 
IMNI. In right-sided patients without IMNI, most cardiac substructures 
saw over a 90% reduction in mean doses to 5 cGy(RBE). However, with 
IMNI, right-sided structures like the RA, RV, and RCA showed smaller 
reductions, especially in maximum doses. Furthermore, we found no 
significant correlation in mean and maximum dose reductions across 
the whole heart and cardiac substructures for both left- and right-sided 
patients. This can be explained by the difference in beam arrangement 
with IMPT and IMRT (Figure 1A). 

Previous research has primarily concentrated on the LV and LAD due 
to their proximity to left-sided tangential-based fields.25 However, it is 
essential to recognize that all cardiac substructures are vulnerable to ra
diation damage, with different clinical manifestations.6,47 In our earlier 
study on IMRT,29 we found that the LAD, LV, and RV received the highest 
doses for left-sided patients, while the RA, RCA, and RV were most irra
diated for right-sided patients. Similarly, Milo et al26 observed the highest 
RT doses in the LV and LAD for left-sided RT and the RA and RCA in right- 
sided RT using photon therapy. In this study, we further observed that 

with IMPT, the residual mean dose was concentrated on LV, LAD, and RV 
for left-sided patients, especially in RNI with IMNI cases. As modern RT 
techniques reduce overall cardiac risk, previously overshadowed toxicities 
may show their clinical meaning. Increasing attention is being paid to 
cardiac conduction system dysfunction.31,33,48 In our previous analysis of 
cardiac toxicity in patients treated with a combination of postoperative RT 
and anti-HER2 therapy, we observed that the rate of conduction system 
dysfunction (60.3%) was significantly higher than other cardiac events, 
including left ventricular ejection fraction decline (0.6%), left ventricular 
diastolic dysfunction (7.5%) and NT-proBNP abnormalities (7.4%).49 This 
dysfunction possibly originates from radiation-induced toxicity affecting 
the sinus and atrioventricular nodes located in the RA and RV.50 Although 
IMPT can decrease cardiac exposure compared to IMRT in general, in 
addition to focusing on left-sided structures such as the LV and LAD, at
tention should also be paid to right-sided substructures, including sinus 
and atrioventricular nodes. The availability of delineation atlases for the 
cardiac conduction system provides valuable tools for evaluating the im
pact of radiation on these structures, making dose assessment for the 
cardiac conduction system more feasible.51 Studies to evaluate the cardiac 
protective strategy with proton therapy need to expand their scope for 
better understanding and mitigating the risks of conduction disorders 
following thoracic RT. 

Figure 3. The mean dose to cardiac substructures with the use of IMPT and IMRT in left-sided patients treated with WBI (A), RNI without IMNI (B), and RNI with 
IMNI (C). Abbreviations: IMNI, internal mammary node irradiation; IMPT, intensity-modulated proton therapy; IMRT, intensity-modulated radiation therapy; LA, left 
atrium; LAD, left anterior descending coronary artery; LCX, left circumflex coronary artery; LM, left main coronary artery; LV, left ventricle; RA, right atrium; 
RCA, right coronary artery; RNI, regional nodal irradiation; RV, right ventricle; and WBI, whole breast irradiation. 

Figure 4. Reduction in estimated cumulative risk of acute coronary event in IMPT applying NTCP models, case by case, in left-sided WBI (A), left-sided RNI without 
IMNI (B), left-sided RNI with IMNI (C), right-sided WBI (D), right-sided RNI without IMNI (E), and right-sided RNI with IMNI (F). Note: Patients with cardiovascular 
risk factors were marked by *; The estimated cumulative risk of ACE in IMRT equals the estimated cumulative risk of ACE in IMPT plus the reduction in the estimated 
cumulative risk of ACE. Abbreviations: CR, cumulative risk; IMPT, intensity-modulated proton therapy; IMRT, intensity-modulated radiation therapy; MHD, mean 
heart dose; and NTCP, normal tissue complication probability. 
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Although radiation-induced heart diseases are closely linked to ra
diation dose,52,53 NTCP models for predicting these risks remain scarce. 
The proton therapy working group for breast cancer in the Netherlands 
identified the Darby et al8 model as the sole model meeting the national 
indication protocol for proton therapy criteria for model-based selec
tion of breast cancer patients.24 Using the Darby et al8 model, our study 
found a significant reduction in ACE risk with IMPT, especially in left- 
sided patients or those with cardiovascular risk factors. Interestingly, 
IMNI did not significantly alter the estimated risk reduction, likely due 
to the minimal difference in MHD between patients with and without 
IMNI with IMRT in our cohort. Building on the Darby et al8 model, van 
den Bogaard et al38 developed a modified NTCP model to predict the 
cumulative ACE risk within 9 years, based on MHD or LV_V5. Their 
findings indicate that the ACE risk predictions using MHD are con
sistent with existing literature, while LV_V5 serves as a better pre
dictor.38 Using the van den Bogaard et al38 model, our cohort observed 
a significant difference in estimated ACE risk based on MHD and LV_V5. 
For left-sided patients without cardiovascular risk factors, ACE risk 
reduction with IMPT based on LV_V5 was generally greater than that 
based on MHD. However, for patients with risk factors, MHD-based risk 
reduction was more pronounced. Assuming all patients have risk fac
tors, IMPT offers substantial ACE risk reduction benefits, whether using 
the Darby model or the van den Bogaard et al38 model. For right-sided 
patients, only the MHD-based model showed the ACE risk reduction 
benefit of IMPT. These findings suggest that IMPT can mitigate ACE risk 
by reducing heart irradiation doses, with the most significant benefits 
observed in left-sided patients and those with cardiovascular risk fac
tors. However, existing NTCP models primarily focus on LAD events. 
There is also a lack of NTCP models based on dose metrics for other 
substructures. A comprehensive NTCP model for integrating cardiac 
substructure dose, patient-specific characteristics, and treatment-re
lated factors will be ideal for decision-making regarding proton 
therapy. The introduction of artificial intelligence will give the possi
bility to integrate vast data sets and, therefore, make the model pos
sible. Nevertheless, the estimated cardiac toxicity reduction with IMPT 
calculated using NTCP models requires validation through long-term 
clinical follow-up data. 

In our study, robustness optimization is implemented to address setup 
and range uncertainties. However, respiratory motion introduces addi
tional complexities in proton therapy due to density variations during the 
breathing cycle. Although 4D CT imaging helps to manage motion-related 
uncertainties, the interplay between respiratory dynamics and robustness 
optimization requires further investigation. Additionally, daily setup var
iations and anatomical changes can impact dose accuracy to different 
degrees. Image-guided radiation therapy or surface-guided radiation 
therapy may improve setup reproducibility and robustness, warranting 
further exploration to optimize dose delivery under motion-related un
certainties. Moreover, LET-based optimization was not utilized in the 
IMPT optimization in this study. With en-face proton beams, range un
certainties and elevated LET near the end of the range could potentially 
increase the biological dose to critical substructures such as the LAD in 
left-sided cases. Future studies are needed to explore LET-based optimi
zation strategies to enhance the safety and effectiveness of IMPT. 

Limitations 

Despite the data being based on a prospective clinical trial, the small 
sample size may introduce bias. The variability in cardiac toxicity risk 
reduction among different target volumes suggests the limitation of the 
available NTCP models, which currently focus on MHD or LV and use 
ACE risk as the only endpoint. This may overlook individual cardiac 
toxicity risks, especially for right-sided patients, such as cardiac con
duction system dysfunctions. Finally, our assessment of the cardiac 
toxicity benefits of IMPT relies on NTCP models rather than long-term 
follow-up data, emphasizing the need for future studies to validate 
these findings with empirical evidence. 

Conclusions 

In conclusion, our study demonstrates that IMPT significantly re
duces the dose to all cardiac substructures compared to IMRT, irre
spective of tumor laterality and target volume. The reduction in cardiac 
toxicity risk associated with IMPT is most notable among left-sided 
patients with RNI and those with cardiac risk factors. There is a need for 
long-term clinical follow-up data to establish a comprehensive cardiac 
toxicity profile corresponding to different substructure doses to opti
mize the current NTCP model based solely on ACE as the endpoint. 
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